Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many-legged elongated robots show promise for reliable mobility on rugged landscapes. However, most studies on these systems focus on planar motion planning without addressing rapid vertical motion. Despite their success on mild rugged terrains, recent field tests reveal a critical need for 3D behaviors (e.g., climbing or traversing tall obstacles). The challenges of 3D motion planning partially lie in designing sensing and control for a complex high-degree-of-freedom system, typically with over 25 degrees of freedom. To address the first challenge regarding sensing, we propose a tactile antenna system that enables the robot to probe obstacles to gather information about their structure. Building on this sensory input, we develop a control framework that integrates data from the antenna and foot contact sensors to dynamically adjust the robot’s vertical body undulation for effective climbing. With the addition of simple, low-bandwidth tactile sensors, a robot with high static stability and redundancy exhibits predictable climbing performance in complex environments using a simple feedback controller. Laboratory and outdoor experiments demonstrate the robot’s ability to climb obstacles up to five times its height. Moreover, the robot exhibits robust climbing capabilities on obstacles covered with shifting, robot-sized random items and those characterized by rapidly changing curvatures. These findings demonstrate an alternative solution to perceive the environment and facilitate effective response for legged robots, paving ways towards future highly capable, low-profile many-legged robots.more » « lessFree, publicly-accessible full text available June 24, 2026
-
Undulation is a form of propulsion in which waves of bending propagate along an elongated, slender body. This locomotor strategy is used by organisms that span orders of magnitude in size and represent diverse habitats and species. Despite this diversity, common neuromechanical phenomena have been observed across biologically disparate undulators, as a result of common mechanics. For example, neuromechanical phase lags (NPL), a phenomenon where waves of muscle contraction travel at different speeds than the corresponding body bends, have been observed in fish, lamprey, and lizards. Existing theoretical descriptions of this phenomenon implicate the role of physical body-environment interactions. However, systematic experimental variation of body-environment interactions and measurement of the corresponding phase lags have not been performed. Using the nematode we measured phase lags across a range of environmental interaction regimes, performing calcium imaging in body wall muscles in fluids of varying viscosity and on agar. A mechanical model demonstrates that the measured phase lags are controlled by the relative strength of elastic torques within the body and resistive forces within the medium. We further show that the phase lags correspond with a difference in the wave number of the muscle activity and curvature patterns. Hence, the environmental forces that create NPL also act as a filter that shapes and modulates the gait articulated by the nervous system. Beyond nematodes, the simplicity of our model suggests that tuning body elasticity may serve as a general means of controlling the degree of mechanical wave modulation in other undulators.more » « lessFree, publicly-accessible full text available April 1, 2026
-
A diversity of organisms live within underground environments. However, visualizing subterranean behavior is challenging because of the opacity of most substrates. We demonstrate that laser speckle imaging, a non-invasive technique resolving nanometer-scale movements, facilitates quantifying biological activity in a granular medium. We monitored fire ants (Solenopsis invicta) at different developmental stages, burial depths (1–5 cm) and moisture fractions (0 and 0.1 by volume) in a container of 0.7 mm glass particles. Although the speckle pattern from the backscattered light precludes direct imaging of animal kinematics, analysis of integrated image differences revealed that spiking during ant movement increased with the developmental phase. Greater burial depth and saturation resulted in fewer and lower magnitude spikes. We verified that spiking correlated with movement via quasi-2D experiments. This straightforward method, involving a laser and digital camera, can be applied to laboratory and potentially field situations to gain insight into subterranean organism activities.more » « lessFree, publicly-accessible full text available November 15, 2025
-
Free, publicly-accessible full text available January 1, 2026
-
Much of the Earth and many surfaces of extraterrestrial bodies are composed of non-cohesive particulate matter. Locomoting on such granular terrain is challenging for common robotic devices, either wheeled or legged. In this work, we discover a robust alternative locomotion mechanism on granular media-generating movement via self-vibration. To demonstrate the effectiveness of this locomotion mechanism, we develop a cube-shaped robot with an embedded vibratory motor and conduct systematic experiments on granular terrains of various particle properties and slopes. We investigate how locomotion changes as a function of vibration frequency/intensity on such granular terrains. Compared to hard surfaces, we find such a vibratory locomotion mechanism enables the robot to move faster, and more stably on granular surfaces, facilitated by the interaction between the body and surrounding grains. We develop a numerical simulation of a vibrating single cube on granular media, enabling us to justify our hypothesis that the cube achieves locomotion through the oscillations excited at a distance from the cube’s center of mass. The simplicity in structural design and controls of this robotic system indicates that vibratory locomotion can be a valuable alternative way to produce robust locomotion on granular terrains. We further demonstrate that such cube-shaped robots can be used as modular units for vibratory robots with capabilities of maneuverable forward and turning motions, showing potential practical scenarios for robotic systems.more » « less
-
Free, publicly-accessible full text available May 19, 2026
-
Free, publicly-accessible full text available May 19, 2026
An official website of the United States government
